Abstract
We simulate the linear and nonlinear rheology of two different viscoelastic polymer solutions, a polyisobutylene solution in pristane and an aqueous solution of hydroxypropylcellulose, using a highly coarse-grained approach known as Responsive Particle Dynamics (RaPiD) model. In RaPiD, each polymer has originally been depicted as a spherical particle with the effects of the eliminated degrees of freedom accounted for by an appropriate free energy and transient pairwise forces. Motivated by the inability of this spherical particle representation to entirely capture the nonlinear rheology of both fluids, we extended the RaPiD model by introducing a deformable particle capable of elongation. A Finite-Extensible Non-Linear Elastic potential provides a free energy penalty for particle elongation. Upon disentangling, this deformability allows more time for particles to re-entangle with neighbouring particles. We show this process to be integral towards recovering the experimental nonlinear rheology, obtaining excellent agreement. We show that the nonlinear rheology is crucially dependent upon the maximum elongation and less so on the elasticity of the particles. In addition, the description of the linear rheology has been retained in the process.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.