Abstract
The simulation of heat transport in a heterogeneous cemented geomaterial using lattice element method is the focus of this paper. The proposed method represents a heterogeneous cemented medium with the inter-connected Euler–Bernoulli beam elements for transmitting heat and mechanical loads. The mechanical equilibrium is assessed with minimizing the potential energy and in a meanwhile the conducted heat between solids is calculated based on modified thermal discrete element method. A validation study for heat transfer is carried out with the existing finite element method. In order to generate the heterogeneity, the random distribution or image processing techniques are implemented and subsequently the effective thermal conductivity (ETC) is determined. The effect of controlling parameters, such as mesh size, randomness factor, voids, heterogeneity and applied external mechanical loads, on calculated ETC is studied. Finally, with application of the proposed coupled thermo-mechanical lattice element, the ETC of three rock samples is determined and compared to the experimental data. The proposed method is able to model the heat transport in a heterogeneous cemented geomaterial and predict the ETC, which matches the experimental results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.