Abstract
We present a mesoscale field theory unifying the modeling of growth, elasticity, and dislocations in quasicrystals. The theory is based on the amplitudes entering their density-wave representation. We introduce a free energy functional for complex amplitudes and assume nonconserved dissipative dynamics to describe their evolution. Elasticity, including phononic and phasonic deformations, along with defect nucleation and motion, emerges self-consistently by prescribing only the symmetry of quasicrystals. Predictions on the formation of semicoherent interfaces and dislocation kinematics are given. Published by the American Physical Society 2024
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.