Abstract

Capacity fade in lithium-ion batteries largely originates from the undesired electrolyte decomposition, which results in the formation of solid electrolyte interphase (SEI) and the anode surface passivation. In this work, a mesoscale interfacial modeling approach is developed to investigate the formation and growth of the SEI film on a typical graphite based anode over several cycles. It is found that lithium diffusion kinetics in the SEI film significantly affects the SEI growth rate. A lower lithium diffusion barrier leads to a higher growth rate. The present model demonstrates that the SEI thickness is a linear function of the square root of the charging time over long-time cycling. Growth of multicomponent SEI film is also elucidated. It is found that the heterogeneity of the SEI film may lead to instability in lithium ion concentration distribution.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call