Abstract

In the tropics, extreme precipitation events are often caused by mesoscale systems of organized, spatially clustered deep cumulonimbi, posing a substantial risk to life and property. While the clustering of convective clouds has been thought to strengthen precipitation rate, no quantitative estimates of this hypothesized enhancement exist. In this study, after isolating the effects of mesoscale convective clustering on precipitation, we find that strongly clustered oceanic convection precipitates more intensely than weakly clustered convection. We further show that this enhancement is primarily attributable to an increase in convective precipitation rate when the environment is less than 70% saturated, with increases in the size of the rainy stratiform region being of equal or greater importance when the environment is closer to saturation. Our results suggest that a correct representation of mesoscale organized convective systems in numerical weather and climate models is needed for accurate predictions of extreme precipitation events.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.