Abstract

The framework of stochastic mechanics is used to obtain scale-dependent bounds on the thermal conductivity of random polycrystals. This is done with the help of a scaling function that enables one to define the mesoscale that separates the effective, macroscopic conductivity from the realization-dependent microscale conductivity. We demonstrate that the scaling function depends upon the single-crystal anisotropy measure $(k)$ and the mesoscale $(\ensuremath{\delta})$ for aggregates made up of cubic, trigonal, hexagonal, and tetragonal single crystals. The proposed methodology unifies the treatment of a variety of crystals over different length scales. Finally, we develop a methodology to construct a material selection diagram in the $(k\text{\ensuremath{-}}\ensuremath{\delta})$ space.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.