Abstract

ABSTRACT: A 2xCO2 climate and runoff in the Upper Deschutes Basin in central Oregon is simulated using a mesoscale atmospheric model and a watershed model that incorporates spatial variability of the runoff process. A nine‐year control climate monthly time series provides a benchmark for assessing changes related to a warmer and wetter 2xCO2 climate. Potential evapotranspiration is increased by 23 percent and snow water equivalent is reduced by 59 percent in the 2xCO2 climate. Annual runoff increases by 23 percent, while November runoff increases by 55 percent. The average maximum monthly runoff is in May for both the control climate and 2xCO2 climate, but in five of the nine years the monthly maximum runoff for the 2xCO2 climate occurs two to five months earlier than for the control climate. The minimum runoff month is one to five months earlier in the 2xCO2 climate in seven of the nine years, and the month of average minimum runoff is March in the control climate and November in the 2xCO2 climate. Since precipitation is greatest in December in both the control climate and 2xCO2 climate, the earlier maximum and minimum runoff for a 2xCO2 climate indicates greater watershed sensitivity to temperature than to precipitation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.