Abstract

In this article, we analyze the stability, convergence, and accuracy of the constrained runs initialization scheme for a mesoscale lattice Boltzmann model (LBM). This type of initialization scheme was proposed by Gear and Kevrekidis in [J. Sci. Comput., 25 (2005), pp. 17–28] in the context of both singularly perturbed ordinary differential equations and equation-free computing. It maps the given macroscopic initial variables to the higher-dimensional space of microscopic/mesoscopic variables. The scheme performs short runs with the microscopic/mesoscopic simulator and resets the macroscopic variables (typically the lower order moments of the microscopic/mesoscopic variables), while leaving the higher order moments unchanged. We use the LBM Bhatnagar–Gross–Krook (BGK) model for one-dimensional reaction-diffusion systems as the microscopic/mesoscopic model. For such systems, we prove that the constrained runs scheme is unconditionally stable and that it converges to an approximation of the slaved state, i.e...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.