Abstract

The North Tianshan orogenic belt in Kyrgyzstan consists predominantly of Neoproterozoic to early Paleozoic assemblages and tectonically interlayered older Precambrian crystalline complexes and formed during early Paleozoic accretionary and collisional events. One of the oldest continental fragments of late Mesoproterozoic (Grenvillian) age occurs within the southern part of the Kyrgyz North Tianshan. Using SHRIMP zircon ages, we document two magmatic events at ~1.1 and ~1.3Ga. The younger event is characterized by voluminous granitoid magmatism between 1150 and 1050Ma and is associated with deformation and metamorphism. The older event is documented by ~1.3Ga felsic volcanism of uncertain tectonic significance and may reflect a rifting episode. Geochemical signatures as well as Nd and Hf isotopes of the Mesoproterozoic granitoids indicate melting of still older continental crust with model ages of ca 1.2 to 2.4Ga.The Mesoproterozoic assemblages are intruded by Paleozoic diorites and granitoids, and Nd and Hf isotopic systematics suggest that the diorites are derived from melts that are mixtures of the above Mesoproterozoic basement and mantle-derived material; their source is thus distinct from that of the Mesoproterozoic rocks. Emplacement of these plutons into the Precambrian rocks occurred between 461 and 441Ma. This is much younger than previously assumed and indicates that small plutons and large batholiths in North Tianshan were emplaced virtually synchronously in the late Ordovician to early Silurian.The Mesoproterozoic rocks in the North Tianshan may be remnants of a once larger continental domain, whose fragments are preserved in adjacent blocks of the Central Asian Orogenic Belt. Comparison with broadly coeval terranes in the Kokchetav area of northern Kazakhstan, the Chinese Central Tianshan and the Tarim craton point to some similarities and suggests that these may represent fragments of a single Mesoproterozoic continent characterized by a major orogenic event at ~1.1Ga, known as the Tarimian orogeny.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call