Abstract

Vertical Si nanowire (NW) arrays are a promising photoanode material in the photoelectrochemical (PEC) water splitting field because of their highly efficient light absorption capability and large surface areas for PEC reactions. However, Si NW arrays always suffer from high overpotential, low photocurrent density, and low applied bias photon-to-current efficiency (ABPE) due to their low surface catalytic activity and intense charge recombination. Here, we report an efficient oxygen evolution cocatalyst of optically transparent, mesoporous ultrathin (2.47 nm thick) In2O3 nanosheets, which are coupled on the top of Si NW arrays. Combined with a conformal TiO2 thin film as an intermediate protective layer, this Si NW/TiO2/In2O3 (2.47 nm) heterostructured photoanode exhibited an extremely low onset potential of 0.6 V vs reversible hydrogen electrode (RHE). The Si NW/TiO2/In2O3 (2.47 nm) photoanode also showed a high photocurrent density of 27 mA cm-2 at 1.23 V vs RHE, more than 1 order of magnitude higher than that of the Si NW/TiO2 photoanodes. This improvement in solar water splitting performance was attributed to the significantly promoted charge injection efficiency as a result of the In2O3 nanosheet coupling. This work presents a promising pathway for developing efficient Si-based photoanodes by coupling ultrathin 2D cocatalysts.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call