Abstract

Foodborne pathogens like Listeria monocytogenes can cause various illnesses and pose a serious threat to public health. They produce species-specific microbial volatile organic compounds, i.e., the biomarkers, making it possible to indirectly measure microbial contamination in foodstuff. Herein, highly ordered mesoporous tungsten oxides with high surface areas and tunable pores have been synthesized and used as sensing materials to achieve an exceptionally sensitive and selective detection of trace Listeria monocytogenes. The mesoporous WO3-based chemiresistive sensors exhibit a rapid response, superior sensitivity, and highly selective detection of 3-hydroxy-2-butanone. The chemical mechanism study reveals that acetic acid is the main product generated by the surface catalytic reaction of the biomarker molecule over mesoporous WO3. Furthermore, by using the mesoporous WO3-based sensors, a rapid bacteria detection was achieved, with a high sensitivity, a linear relationship in a broad range, and a high specificity for Listeria monocytogenes. Such a good gas sensing performance foresees the great potential application of mesoporous WO3-based sensors for fast and effective detection of microbial contamination for the safety of food, water safety and public health.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.