Abstract
Here we report a novel type of hierarchical mesoporous SnO2 nanostructures fabricated by a facile anodization method in a novel electrolyte system (an ethylene glycol solution of H2C2O4/NH4F) followed by thermal annealing at a low temperature. The SnO2 nanostructures thus obtained feature highly porous nanosheets with mesoporous pores well below 10 nm, enabling a remarkably high surface area of 202.8 m2/g which represents one of the highest values reported to date on SnO2 nanostructures. The formation of this novel type of SnO2 nanostructures is ascribed to an interesting self-assembly mechanism of the anodic tin oxalate, which was found to be heavily impacted by the anodization voltage and water content in the electrolyte. The electrochemical measurements of the mesoporous SnO2 nanostructures indicate their promising applications as lithium-ion battery and supercapacitor electrode materials.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.