Abstract

Endowing metal implants with multifunctional traits to prevent implant-associated infections and improve osseointegration has become a pivotal facet in orthopedics and dental fixation. Herein, we report the synthesis of mesoporous 70S bioactive glass-silk fibroin nanocomposites inspired by the biomimetic organo-apatites of mineralized collagen. The mesoporous, biomimetic nanocomposites enabled loading of antibiotics (gentamicin and doxycycline) and favored their release in a rapid manner while preserving their bioactivity. Ease in modification of the mesoporous nanocomposites enabled tailoring of 3-(aminopropyl)-triethoxysilane to the silanol network of bioactive glass, which improved the loading capacity of the hydrophobic drug (dexamethasone). The modification favored the slow and sustained release of dexamethasone from the modified mesoporous nanocomposites, which is desired for mediating osteogenesis and immunomodulation. Conformal coatings of these drug-loaded nanocomposites were materialized on stainless-steel implants through a facile electrophoretic deposition (EPD) technique, wherein the deposition yield can be controlled by applied parameters. Antibiotic coatings exhibited antibacterial efficacy with bioactivity retained up to 28 days, while dexamethasone-loaded coatings favored mesenchymal stem cell adhesion and osteoinduction. The immunomodulatory roles were also ascertained, wherein M2 macrophage biasness was favored in dexamethasone-loaded coatings. The versatility of these mesoporous biomimetic nanocomposites guarantee the loading of scenario-specific drugs to aid their local delivery through the conformal EPD coatings developed over metal implants toward improving implant patency.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call