Abstract

A new procedure for the synthesis of mesoporous silica with controlled porous structure and regular morphology was developed. It is based on the precipitation from a homogeneous environment using cetyltrimethylammonium bromide as a structure directing agent. The decrease in pH, which causes the formation of solid particles, is achieved by the hydrolysis of ethyl acetate. The procedure enables to obtain not only the MCM-41 mesoporous molecular sieve with a very high degree of pore ordering and phase purity, but also materials of a new type, viz. bimodal silicas containing both the MCM-41 mesopore system with a pore size of about 3 nm and a system of larger mesopores with sizes ranging from 10 to 30 nm. Owing to their structural properties and regular worm-like morphology, bimodal silicas are promising materials for applications in separation processes or as supports for bulky molecules or nanoparticles.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call