Abstract

Conversion of glycerol to acrolein is a useful reaction for value-added application of biodiesel-derived glycerol and bioenergy development. The high-performance solid acid catalyst is essential to this dehydration reaction. In this paper, tungsten-based heteropolyacids (HPA) were supported on non-ordered mesoporous silica (MSU-x) to increase their dispersion and used as catalysts for glycerol dehydration to acrolein. Aiming to reveal the surface structure of HPA and resulting acidic properties, as well as the relationship between acidic properties and dehydration activity, different loadings of H3PW12O40 were supported on MSU-x (10–50 wt%) and the catalysts were characterized by X-ray diffraction (XRD), BET, SEM/TEM, UV–vis diffuse reflectance spectra (DRS), Raman and FT-IR techniques. Their acidic properties were studied by NH3-Temperature Programmed Desorption (NH3-TPD) and Pyridine adsorption methods. The molecular structure and dispersion of H3PW12O40 supported on the catalysts was revealed. The Keggin unit preserved well but with different hydration level for various loadings. The total acid concentration and respective Brønsted/Lewis acid identification were calculated. The acrolein yield increased with H3PW12O40 loading until 30 wt% and showed less change with higher loadings. Based on the correlation of acrolein formation rate with acidic properties, the active role of Brønsted acid and the cooperative role of Brønsted/Lewis acid sites for glycerol dehydration to acrolein were discussed. This work provides new insight into the structure evolution of heteropolyacids and the catalyst design for the glycerol to acrolein.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call