Abstract

Objective The characteristics of poor pharmacokinetics, stability, and low solubility seriously limited the clinical application of resveratrol (Res) in breast cancer. Thus, this study intends to develop a delivery system for Res which could be better used in breast cancer therapy. Methods Resveratrol-modified mesoporous silica nanoparticles (MSN-Res) were chemically constructed. Their shape and encapsulation were detected by transmission electron microscope, Fourier transforms infrared spectrometer, and UV spectroscopy, respectively. MGF-7 tumor-bearing mice were established by subcutaneous injection, and the pathological changes were detected by hematoxylin-eosin staining. CCK-8 and Ki-67 immunohistochemical staining were used for proliferation evaluation in vitro and in vivo. Flow cytometry, TUNEL, wound healing, and transwell assay detected cell apoptosis, invasion, and migration. Results MSN-Res was successfully prepared with high biosafety. MSN-Res inhibited MGF-7 cell proliferation, invasion, and migration and promoted apoptosis in vitro. Furthermore, MSN-Res showed better performance compared Res in breast cancer mouse models. In addition, we found that MSN-Res inhibited tumor growth via inhibiting the NF-κB signaling pathway. Conclusion MSN-Res inhibited breast cancer progression with better efficacy compared with Res treatment alone by inhibiting the NF-κB signaling pathway, suggesting that MSN-Res is a more effective adjuvant treatment method for breast cancer. Thus, our findings may provide a new and safer means of using phytochemicals in combinatorial therapy of breast cancer.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.