Abstract

Rivastigmine hydrogen tartrate (RT) is a molecule with both hydrophilic and hydrophobic properties used for the treatment of the Alzheimer’s disease. In this work, the larger pore size of mesoporous silica nanoparticles (P1-MSN) was synthesized and then, P1-MSN were functionalized by succinic anhydride (S-P1-MSN) and 3-aminopropyltriethoxysilane (APTES) (AP-CO-P1-MSN) using the grafting and co-condensation methods, respectively. A new method was used for the functionalization of P1-MSN by succinic anhydride at room temperature. Nanoparticles were characterized by special instrumental analysis and loaded by RT. Maximum entrapment efficiency and RT loading percentage into P1-MSN, AP-CO-P1-MSN and S-P1-MSN were respectively obtained as 21.26 and 25.5%, 41.5 and 49.8%, and 11.9 and 14.28% for 24 h. In the simulated gastric and body fluids, the release rate of RT-loaded AP-CO-P1-MSN (AP-CO-P1-MSN-RT) was lower than that of other RT-loaded nanoparticles. In oral pathway, the sustained release of RT was observed in AP-CO-P1-MSN-RT. Moreover, no cytotoxicity effect was observed for P1-MSN, but the cells treated by AP-CO-P1-MSN showed a reduction in SY5Y cell viability due to easy entrance of these nanoparticles and their accumulation in different parts of the cell as observed by TEM.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.