Abstract

The increasing use of nanomaterials has naturally caused heightened concerns about their potential risks to human and animal health. We investigated the effect of zinc oxide nanoparticles (ZnO NPs) and mesoporous silica nanoparticles (MSN) on steroidogenesis in the corpus luteum (CL) of pregnant mice and testis of male offspring. Pregnant albino mice were exposed to ZnO NPs and MSN for 2 days on alternate days, gestation days 15-19. Hepatic injury marker enzymes increased in the higher concentration of NM-exposed mother mice, but histological examination revealed no changes in the placenta of pregnant mice, whereas testis of male offspring showed gross pathological changes. The expression pattern of progesterone biosynthesis-related genes was also altered in the CL of NP-exposed pregnant mice. In utero exposure of ZnO NPs increased the relative expression of StAR in 100 mg/kg body weight (BW) ZnO NP-treated and bulk ZnO-treated groups and P450 side-chain cleavage enzyme (P450scc) in 50 mg/kg BW ZnO NP-treated and 100 mg/kg of bulk ZnO-treated male offspring. Serum testosterone concentration significantly increased in the 100 mg/kg of bulk ZnO-treated group and decreased in the 250 mg/kg of MSN-treated group and a single dose of 300 mg/Kg BW of ZnO NPs caused miscarriages and adversely affected the developing foetus in mice.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call