Abstract

The valorization of black liquor, a by-product produced in considerable quantities from the paper manufacturing processes, has demonstrated the effectiveness of thermal reconversion into pyrolysis gas, bio-oil, and bio-char, a sustainable approach placing the feedstock into a circular economy concept. The present study focused on developing disposal solutions through energy recovery via pyrolysis at 300 °C and 450 °C when lignite and nanomaterials (such as Cu-Zn-MCM-41, Ni-SBA-3, or Ni-SBA16) were used as catalysts. The results were compared to those of non-catalytic pyrolysis. The use of the Cu-Zn-MCM-41 catalyst proved to be efficient for pyrolysis gas production, reaching 55.22 vol% CH4. The increase in the calorific value of the pyrolysis gas was associated with the use of the Cu-Zn-MCM-41, showing a value of 42.23 MJ/m3 compared to that of the non-catalytic process, which yielded 39.56 MJ/m3. The bio-oil resulting from the pyrolysis with Cu-Zn-MCM-41 showed the highest energy value at 6457 kcal/kg compared to that obtained with the other two nanocatalysts, Ni-SBA-3 and Ni-SBA-16, as well as that of the raw material, which had a value of 3769 kcal/kg. The analysis of bio-char revealed no statistically significant differences when comparing the outcomes from using the various nanocatalysts, suggesting their minimal impact on the energy content.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.