Abstract

A new synthesis route has been established to prepare highly pure mesoporous silica material (Si-MCM-41) with rod-like morphology. To improve the stability and to bring about the long range ordering in the mesoporous material, a series of tetra-alkylammonium salts has been employed in the new procedure in addition to the surfactant, cetyl-trimethylammonium bromide. The mesoporous silica materials have been characterized by small-angle X-ray diffraction (SAX), scanning electron microscopy (SEM), transmission electron microscopy (TEM), N 2 sorption and solid state 29Si NMR measurements. The XRD study revealed that an excellent long range structural ordering of mesoporous material can be achieved using tetra-butylammonium bromide as a promoter. SEM study showed that rod-shaped single crystal like particles were formed in hydrothermal synthesis. TEM study revealed the presence of hexagonal voids on the face of the rod-shaped particles while nitrogen sorption study establishes the mesoporosity of the material. A high degree of cross-linking of –Si–O–Si– networks in the mesoporous silica has been evidenced in 29Si NMR study.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call