Abstract
A core-shell QDs@mSiO2@y-AuNCs nanoprobe was prepared, and a new ratiometric fluorescent sensor for thiram detection was developed. The mechanism of thiram sensing was investigated using FTIR, surface-enhanced Raman, XPS spectra, etc. The sensing of thiram was mainly ascribed to the formation of Au-S bonds between thiram and Au atoms on y-AuNCs surface, resulting in the dissociation of 11-MUA ligand from the y-AuNCs surface and the charge transfer between thiram and y-AuNCs. In the ratiometric fluorescence detection of thiram based on QDs@mSiO2@y-AuNCs, a linear range of 0.5-60ng/mL was obtained with a LOD of 0.19ng/mL. Compared with the fluorescence detection based on y-AuNCs, the ratiometric fluorescence detection of thiram demonstrated 3-fold enhanced sensitivity. The improvement was ascribed to two aspects: the fluorescence emission of y-AuNCs was enhanced after they were loaded onto the QDs@mSiO2 nanoparticles; the ratiometric detection mode provided more precise sensing. The detection of thiram can be completed immediately after mixing the nanoprobe with thiram. Good recoveries of thiram in apple and pear samples were achieved. All the above results demonstrated the high potential of this method in practical applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.