Abstract

Mesoporous cobalt phosphide (meso-CoP) was prepared by the phosphorization of ordered mesoporous cobalt oxide (meso-Co3 O4 ). The electrical conductivity of meso-CoP is 37 times higher than that of nonporous CoP, and it displays semimetallic behavior with a negligibly small activation energy of 26 meV at temperatures below 296 K. Above this temperature, only materials with mesopores underwent a change in conductivity from semimetallic to semiconducting behavior. These properties were attributed to the coexistence of nanocrystalline Co2 P phases. The poor crystallinity of mesoporous materials has often been considered to be a problem but this example clearly shows its positive aspects. The concept introduced here should thus lead to new routes for the synthesis of materials with high electronic conductivity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.