Abstract

Pyrophyllite–TiO2 nanocomposite PTi750 was successfully synthesized using a sol–gel method at ambient temperature based on exfoliation of the pyrophyllite layered clay by incorporation of the TiO2 precursor titanium(IV) t-butoxide. PTi750 exhibited higher photocatalytic activity in phenol degradation compared with commercial TiO2 Aeroxide P25. Ag-photodeposited PTi750 was more photoactive than PTi750, exhibiting detoxification, total degradation, and good mineralization of polluted solution and excellent stability after five reuses at optimal conditions in terms of the parameters pH, H2O2 concentration, and photocatalyst amount. The nanocomposites were investigated using several techniques, viz. diffuse-reflectance ultraviolet–visible (UV–Vis) spectrophotometry, scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy, X-ray diffraction analysis, X-ray fluorescence spectroscopy, Fourier-transform infrared spectroscopy, and Brunauer–Emmett–Teller (BET) specific surface area measurements.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call