Abstract
Conjugated polymers are promising light harvesters for water reduction/oxidation due to their simple synthesis and adjustable bandgap. Herein, both cyanamide and triazole functional groups are first incorporated into a heptazine-based carbon nitride (CN) polymer, resulting in a mesoporous conjugated cyanamide-triazole-heptazine polymer (CTHP) with different compositions by increasing the quantity of cyanamide/triazole units in the CN backbone. Varying the compositions of CTHP modulates its electronic structures, mesoporous morphologies, and redox energies, resulting in a significantly improved photocatalytic performance for both H2 and O2 evolution under visible light irradiation. A remarkable H2 evolution rate of 12723µmol h-1 g-1 is observed, resulting in a high apparent quantum yield of 11.97% at 400nm. In parallel, the optimized photocatalyst also exhibits an O2 evolution rate of 221µmolh-1 g-1 , 9.6 times higher than the CN counterpart, with the value being the highest among the reported CN-based bifunctional photocatalysts. This work provides an efficient molecular engineering approach for the rational design of functional polymeric photocatalysts.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.