Abstract

Periodic mesoporous organosilica materials (PMOs) are the new class of porous and hybrid organic-inorganic materials. They represent exceptional and functional bridged polysilsesquioxanes prepared by sol-gel processing of monomers using triblock copolymers or ionic surfactants as the structure directing agents. By changing the monomer type, various organic functional groups may be incorporated into the framework of PMO materials. Moreover it is possible to introduce heteroatoms in the structure of mesoporous materials via isomorphous substitution of the silicon atoms. In the present study, we report the preparation and characterization of the series of zirconium, titanium and mixture of them, doped mesoporous silica. The PMOs have been synthesized by the hydrolysis and the condensation of bridged silsesquioxane precursors containing two different organic bridging groups ((R’)3Si-CH2-CH2-Si(R’)3, R’ - methoxy or ethoxy). The influence of temperature of synthesis on the structure of PMOs was examined. PMO-Zr and PMO-Zr-Ti were synthesized by employing a zirconyl chloride octahydrate (ZrOCl2•8H2O), titanium isopropoxide, NaCl, bis(trimethoxysilyl)ethane (BTME) as a silica source and triblock copolymer P123 as the structure directing agent while PMO-Ti was prepared using 1,2-bis(triethoxysilyl)ethane (BTESE), titanium isopropoxide, NaOH and cetyltrimethylammonium bromide (CTABr) as a structure directing agent. The resulting materials exhibited well-ordered two-dimensional hexagonal space group p6mm, high surface areas in the range of 700-1100 m2/g. The X-ray photoelectron spectroscopy (XPS) analysis indicated the successful incorporation of heteroatoms into hybrid PMOs and the IR spectra confirmed satisfactory removal of the surfactants.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call