Abstract

Catalysts for the oxygen reduction reaction (ORR) are highly important in fuel cells and metal-air batteries. Cheap ORR catalysts with ultrahigh electrochemical activity, selectivity, and stability are extremely desirable but still remain challenging. Herein, mesoporous NiCo2O4 nanoplate (NP) arrays on three-dimensional (3D) graphene foam are shown to be a highly economical ORR catalyst. This mesoporous mixed-valence oxide can provide more electrocatalytic active sites with increased accessible surface area. In addition, graphene-foam-supported NiCo2O4 NP arrays have a 3D hierarchical porous structure, which is of great benefit to ion diffusion and electron transfer. As a result, the mesoporous NiCo2O4 NP arrays/graphene foam catalyst exhibits outstanding ORR performance with the four-electron reduction of O2 to H2O in alkaline media. Furthermore, the mesoporous catalyst shows enhanced electrocatalytic activity with a half-wave potential of 0.86 V vs RHE and better stability compared with a commercial Pt/C catalyst.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.