Abstract

Morphological and surface features are the key tools used to tune the catalytic performance of any metal oxide. In the present study, nickel oxide nanoparticles (NiO NPs) with three different morphologies were prepared using a simple hydrothermal method. The electrocatalytic performance of the prepared NiO NPs was evaluated with regard to the detection of monosaccharide glucose. The physicochemical properties of prepared NiO nanostructures were confirmed using different conventional characterization techniques. The flower-like morphological NiO NPs with nanosized petals have a high surface area and a more defective surface, resulting in improved heterogeneous catalytic activity compared to hexagonal and spherical morphological NiO NPs in glucose oxidation. The anionic and cationic vacancies on the mesoporous surface of NiO nanopetals endorsed an enhanced charge transfer efficiency compared to other NiO morphologies. The effect of scan rate, confirmed by cyclic voltammetry analysis, ensured the diffusion-controlled quasi-reversible electrochemical reaction between surface-modified electrodes and analyte. The NiO petals showed a wide linear detection range (100 nmol L−1–12 mmol L−1) and a lower detection limit of 57 nmol L−1. In addition, the anti-interference ability, repeatability, stability and real sample analysis further affirmed the enhanced catalytic features of NiO nanopetals. The results showed that defective surfaces and surface features of the NiO nanostructures could be used to tune their overall sensor performance in future applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.