Abstract

Mesoporous TiO 2 nanoparticle thin films were prepared on MEMS microhotplate (μHP) platforms and evaluated as high-sensitivity conductometric gas sensor materials. The nanoparticle films were deposited onto selected microhotplates in a multi-element array via microcapillary pipette and were sintered using the microhotplate. The films were characterized by optical and scanning electron microscopies and by conductometric measurements. The thin films were evaluated as conductometric gas sensors based on the critical performance elements of sensitivity, stability, speed and selectivity. The nanoparticle films were compared with compact TiO 2 films deposited via chemical vapor deposition (CVD) and the nanoparticle films were found to demonstrate higher sensitivity to target analytes. The nanoparticle films were also stable with regard to both baseline conductance and signal response over 60 h of continuous operation at high temperatures (up to 475 °C). Sensor response times were evaluated and the TiO 2 nanoparticle films showed fast responses to the presence of analyte (≈5 s) and a response-time dependence on the analyte concentration. Control of the sensor operating temperature, an inherent benefit of the microhotplate platform, was employed to demonstrate the selectivity of the nanoparticle films.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call