Abstract

Coal fly ash was converted into two types of porous materials, MCM-41 and SBA-15 (both of hexagonal structure), using the supernatant of the fly ash. It was found that most of the Si and Al components in the fly ash could be effectively transformed into mesoporous materials, depending on the hydrothermal conditions, and that fusion is essential. Investigation by 29Si and 27Al MAS NMR demonstrated that fusion plays an important role in enhancing the hydrothermal conditions for synthesis of these materials. A high concentration of Na ions in the supernatant of the fused fly ash was not found to be critical in the formation of Al-MCM-41 when prepared under controlled pH conditions. Pyridine adsorption experiments on Al-MCM-41 prepared from coal fly ash revealed the presence of Bronsted and Lewis acid sites. It was also found that the catalytic activity in the cumene cracking reaction is linked only to the accessible aluminium, and not to the total incorporated aluminium present in the Al-MCM-41.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call