Abstract

Aluminum-containing hexagonally ordered mesoporous silica (Al-MCM-41) with specific surface area of 509.4 m2/g was first synthesized using natural halloysite as source material by hydrothermal treatment, without addition of silica or aluminum regents. The samples were characterized by X-ray diffraction, transmission electron microscopy, N2 adsorption–desorption measurements, and Fourier transform infrared spectra techniques. The results indicate that process parameters, including calcination temperature, pH value, n(SiO2)/n(CTAB)/n(H2O) ratio, and hydrothermal reaction time, show moderate effects on the preparation of Al-MCM-41. SiO2/Al2O3 molar ratio could be effectively modulated by the calcination temperature for halloysite. Furthermore, we first clarified the structural evolution from natural halloysite to mesoporous material Al-MCM-41 at the atomic level.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.