Abstract

Synthesis of mesoporous iridium oxide films via soft templating and evaporation-induced self-assembly is demonstrated employing an amphiphilic triblock-copolymer PEO-PB-PEO. Films possess nanocrystalline walls and feature locally ordered pores of about 16 nm diameter. Analysis of the film properties by SEM, TEM, EDX, XPS, SAXS, XRD, and BET along the thermal treatment that succeeds dipcoating shows that the polymer template is removed by calcination between 200 and 300 °C, accompanied by uniaxial shrinkage of film and pore system perpendicular to the substrate. Treating the film in excess of 450 °C leads to further growth of crystallite size and loss of surface area progressing gradually with increasing calcination temperature. Templated IrO2 films conditioned at 450 °C show substantially reduced electrocatalytic overpotentials (efficiency increases) for the oxygen evolution reaction (OER) compared to those of untemplated coatings. Pore templating thus enables direct control over surface catalytic propert...

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.