Abstract

Copper oxide supported on mesoporous manganese oxide (meso Cu/MnOx) was synthesized by an inverse micelle templated evaporation induced self-assembly procedure. Controlled aggregation of nanoparticles and a monomodal size distribution of mesopores with tunable structural properties were observed. The material possessed superior catalytic activity in the aerobic oxidative coupling of terminal alkynes. Excellent conversion (>99% in most cases) and selectivity were observed in both homocoupling and cross-coupling of alkynes using the optimized reaction conditions. Use of air as the sole oxidant, avoidance of any kind of additives, ease of product separation, great functional group tolerability, wide synthetic scope, and superior reusability (up to eighth cycle) are the notable features of our catalytic protocol. While the reaction mechanism was elucidated, a synergistic cooperative effect between the copper and manganese has been established, which is responsible for the superior catalytic activity. The labi...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.