Abstract

Mesoporous carbon supported ultrasmall metal nanoparticles (MNPs) are attracting interests in various catalytic applications. Traditional synthetic methods usually involve tedious and time-consuming procedures. Therefore, it remains a grand challenge to prepare well-defined ultrasmall MNPs on mesoporous carbon support. Here, we successfully synthesized a series of mesoporous carbon-supported ultrasmall noble MNPs including Rh, Ru and Pd via a “Two-in-One” strategy which combines the synthesis of mesoporous carbon with ultrasmall MNPs based on a facile mechanochemical method. The key here is to employ CaC2 as both a carbon source for the construction of porous carbon network and an efficient reducing agent to facilitate the formation of ultrasmall MNPs via a solid-state redox reaction. This method circumvent high-temperature pyrolysis and other tedious procedures for the preparation of mesoporous carbon and MNPs, thus representing a versatile, ultrafast, and scalable strategy. Interestingly, the as-prepared Rh-BM-C after ball milling (BM) exhibits an extraordinary low-overpotential of 28 mV@10 mA cm−2 as well as a remarkable turnover frequency (TOF) value of 2.6 H2 s-1@50 mV for hydrogen evolution. Density functional theory (DFT) calculations reveal that nitrogen-doping, type of noble metal and synergistic effect between metal layer and carbon support play a critical role in achieving this compelling HER performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.