Abstract

3D mesoporous black TiO2-x/Ag nanosphere coupled with 2D g-C3N4 sheet ternary heterojunctions are successfully fabricated through a facile evaporation-induced self-assembly (EISA) process and photodeposition method, followed by a mild calcination (350°C) under an argon atmosphere after an in situ solid-state chemical reduction strategy. The resultant mesoporous black TiO2-x/Ag/g-C3N4 ternary heterojunctions with narrow band gap of∼2.27eV possess a relative high specific surface area of∼100m2g−1, main pore size of 6.2nm and the highest visible-light-driven photocatalytic property for degradation of methyl orange (97%) and methylene blue (99%). The apparent reaction rate constants (k) of mesoporous black TiO2-x/Ag/g-C3N4 for methyl orange and methylene blue are∼9 and 11 times higher than that of pristine TiO2. The possible mechanism is proposed, and the excellent photocatalytic property can be ascribed to the introduction of Ti3+ self-doping and g-C3N4, which favor the visible light absorption and the separation of electron-hole pairs, the surface plasma resonance effect of Ag nanoparticle, and the mesoporous networks offer more surface active sites.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.