Abstract

BiVO4 has been constructed into heterojunctions with TiO2 to boost the photocatalytic ability under visible illumination. Here, mesoporous BiVO4/TiO2 nanocomposites have been fabricated by a facile sol-gel approach utilizing nonionic surfactant and addressed for morphological, optical, structural, and degradation of ciprofloxacin (CIP) in water under visible illumination as an antibiotic pollutant model. The TEM images demonstrated that the TiO2 NPs are homogenous in terms of shape and size (15 ± 5nm). The introduction of BiVO4 into mesoporous TiO2 could effectively enhance the rapid separation efficiency of the photoinduced carriers and optical absorption. The 3%BiVO4/TiO2 photocatalyst possessed the best degradation efficiency (100%) within 60min which was promoted 20-folds larger than TiO2 NPs (5%). 3%BiVO4/TiO2 nanocomposite exhibited the fastest degradation rate (2.15 × 10-2min-1), which was 40 times faster than bare TiO2 photocatalyst (0.05 × 10-2min-1). The enhanced photocatalytic ability originated from superior charge separation characteristics and high solar energy absorption in mesopore structures. The recombination rate and mobility of charge carriers were characterized utilizing photoluminescence (PL) and photoelectrochemical measurements. This work highlights the advantages of mesoporous heterojunction BiVO4/TiO2 nanocomposites for photocatalytic performances and provides a multilateral route to design an effective wide-spectrum response photocatalyst for the development of comparable materials. The photocatalytic mechanism for degradation CIP over BiVO4/TiO2 was discussed in detail..

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.