Abstract

Streptomycin (STR) is a widely used antibiotic to treat various infectious diseases in humans and animals. Increased STR production and distribution result in harmful residue in soil and water. Consequently, STR exists in biotic- and abiotic-counterpart of the environment and poses potential toxicity and risk due to its bioaccumulation and biomagnification properties. Sustainable remediation of STR from wastewater requires selective, minimal, low-cost, regenerable, and reusable materials as adsorbents. In this study, magnetic-halloysite incorporated polymer composite beads (SPHM) were synthesized and used for the efficient clean-up of toxic STR from wastewater. SPHM has a mesoporous structure with an abundance of oxygen-containing functional groups and exhibits a synergistic STR clean up performance (qm = 235.71 ± 13.98 mg/g). Sorption and interfacial studies revealed that diffusion, hydrophobic and ionic interactions, including electrostatic interaction, are involved in STR remediation. Electrostatic interaction plays a vital role alongside the physical sorption mechanism due to the presence of hydroxyl and carboxyl groups induced from poly (vinyl alcohol) and sodium alginate. Moreover, X-ray photoelectron spectroscopy (XPS) and Time-of-flight secondary ion mass spectrometry (ToF-SIMS) analyses confirm the involvement of opposing charged groups of SPHM and STR in adsorption. SPHM can be magnetically separated in just 20 s and is regenerable and reusable up to 10 times, with outstanding performance and stability. The sorption process requires only a minimal amount of SPHM, i.e., 0.5 g/L for STR clean-up. Even the natural surface water composition did not affect its performance. Hence, natural nanoclay-based, biocompatible and low-cost SPHM has a great potential for the sustainable remediation of streptomycin and other similar antibiotics from wastewater.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.