Abstract

Mesoporous Ag/In2O3 composite materials with different concentrations of Ag particles have been prepared by the calcination of Ag+-entrapped indium-organic frameworks (InOFs). The structures and components of these MOF-derived Mesoporous Ag/In2O3 composite materials have been characterized thoroughly. Gas sensing measurements indicated that the incorporation of metallic Ag particles into the mesoporous structure significantly improves the gas-sensing properties of In2O3. Specially, the response of 5% Ag-loaded In2O3 sensor to 50ppm formaldehyde is 5 times higher than that of pure In2O3 particles at 210°C, which is among the best formaldehyde sensor materials reported to date. Also, Ag/In2O3 composite sensor exhibit short response time (~22s) and excellent recovery. These results indicated that the InOF-derived mesoporous Ag/In2O3 materials maybe can be used to fabricate high performance formaldehyde sensors in practice.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.