Abstract

Abstract Novel activated carbon-zeolite composite adsorbent was prepared from macadamia shell bio-waste and synthetic zeolite X using hydrothermal treatment. Characterisation studies revealed mainly mesoporous structure with 418 m2·g− 1 BET surface area with faujasite clusters on the carbon carrier. Sorption capacity for methylene blue model pollutant increased from 85 to 97 mg·g− 1 with the temperature increase from 25 to 45 °C, and improved with increasing pH. Nonlinear regression analyses found accurate fit to the pseudo-first-order kinetics model and intra-particle diffusion rate controlling mechanism. Excellent fits to the Jovanovic isotherm model indicated monolayer coverage on chiefly homotattic surfaces with variable potential. The thermodynamic analysis confirmed spontaneous and endothermic physisorption process. The spent adsorbent was regenerated with 20% capacity loss over five reuse cycles. Although the adsorbent was developed for ammonia, heavy metal and organic matter removal from water sources, the results also indicate good performance in cationic dye removal from wastewaters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.