Abstract

Mesopores silica nanotubes (MSNTs)-based chemical sensors for the rapid detection and of highly selective Fe2+ ions have been prepared. The novel nanosensors were prepared via immobilization of 1,10-phenanthroline-5-amine (PA) and bathophenanthroline (BP) onto the MSNTs. The resultant PA and BP sensors display high sensitivity for detection the Fe2+ ions in tap water, river water, sea water, two units in simple cycle power station, and biological samples. More interestingly, upon meeting ultra-trace amount of Fe2+ ions, a red complex appears at once. Color changes can be seen from the naked eye and tracked with a smartphone or spectrophotometric techniques. The response time that is necessary to achieve a stable signal was less than 15 s. The Univariate (Univar) calibration technique had been utilized for the determination of figures of merits. The detection limit obtained from the digital image analysis was 19 ppb (7.04 × 10−7 M) for Fe2+ ions, while the obtained from the spectrophotometric method was 6.7 ppb (2.48 × 10−7 M). Therefore, the two sensors had been successfully used in the determination of Fe2+ in several real samples with high sensitivity and selectivity. In addition, they can be used as a simple, rapid, and portable method to detect and quantify the pre rust in any cooler system.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.