Abstract

Generally, Camellia oleifera shells are byproducts of edible oil production and are often incinerated or discarded as agricultural waste without any sustainable uses. Although numerous studies have focused on the C. oleifera shell, few studies have examined its biological characteristics, particularly its internal mesoporosity. The aim of the present study was to elucidate the microscopic biological structure of C. oleifera shells to explore their potential applications. Paraffin-embedded slices of C. oleifera shells were observed on different planes using an optical microscope. Supercritically dried samples were prepared and assessed using the nitrogen adsorption-desorption technique to reveal mesopore structural features. The present article shows that C. oleifera shells were mainly made up of stone cells, parenchyma tissue, spiral vessels, and vascular bundles. The key features of the cells were the pits in the cell walls of stone cells and vessels, which are associated with the abundant mesopores in C. oleifera shells. C. oleifera shells have an advantage over woody materials based on their mesoporosity features. C. oleifera shells are ideal raw materials that could serve as biomass templates or find applications as other high-performance biomimetic materials.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call