Abstract

Mesophase separation has been identified in a polycation/anionic-nonionic mixed micelle system formed by the coacervation of poly(diallyldimethylammoniumchloride)/sodium dodecylsulfate-Triton X-100 in 0.40 M NaCl. The resultant dense, optically clear fluid was studied by turbidity, dynamic light scattering (DLS), and rheology. The presence of two diffusion modes in DLS points to microscopic heterogeneity: coexistence of micelle-rich (dense) domains with micelle-poor (dilute) domains. With an increase in temperature above 20 degrees C, the turbidity rises rapidly along with the intensity of the slow mode. The concomitant decrease in the diffusivity of the slow mode signals an increase in the effective viscosity of the dense domain. With further increase in temperature, dramatic shear thinning is observed, and finally, macroscopic phase separation can be identified by centrifugation. At a temperature near that for quiescent phase separation, we observe shear-induced phase separation. We propose a mechanism to explain the connection between temperature- and shear-induced mesophase separation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.