Abstract
The aim of this study was to enhance the stability, bioaccesibility, and bioactivities of curcumin using a composite nanoparticle prepared from zein and Mesona chinensis polysaccharide (MCP). Curcumin-loaded nanoparticles (ZMC NPs) were prepared. ZMC NPs showed smooth spherical structure with a high encapsulation efficiency (94 %), a small average particle size (223 nm), and surface negative charge (−34.53 mV). Compared with free curcumin, encapsulated curcumin has been shown to have better environmental stability, higher antioxidant activity and bioaccesibility. The surface coating of zein NPs with MCP makes them more amenable to uptake by intestinal epithelial cells. Studies on in vitro antitumor activity of ZMC NPs showed that they could enter hepatocellular carcinoma cells, induce cell apoptosis, promote ROS production, and alter mitochondrial membrane potential, showing higher in vitro antitumor activity compared to free curcumin. These results may contribute to the development of novel curcumin oral delivery systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.