Abstract

Using holography, we study the low-lying mesonic spectrum of a range of asymptotically free gauge theories. First we revisit a simple top-down holographic model of QCD-like dynamics with predictions in the M_rho-M_pi plane. The meson masses in this model are in very good agreement with lattice gauge theory calculations in the quenched approximation. We show that the key ingredient for the meson mass predictions is the running of the anomalous dimension of the quark condensate, gamma. This provides an explanation for the agreement of holographic and quenched lattice gauge theory calculations. We then study the `Dynamic AdS/QCD model' in which the gauge theory dynamics is included by a choice for the running of gamma. We use the naive two-loop perturbative running of the gauge coupling extrapolated to the non-perturbative regime to estimate the running of gamma across a number of theories. We consider models with quarks in the fundamental, adjoint, two-index symmetric and two-index anti-symmetric representations. We display predictions for M_rho, M_pi, M_sigma and the lightest glueball mass. Many of these theories, where the contribution to the running of gamma is dominated by the gluons, give very similar spectra, which also match with lattice expectations for QCD. On the other hand, a significant difference between spectra in different holographic models is seen for theories where the quark content changes the gradient of the running of gamma around the scale at which chiral symmetry breaking is triggered at gamma approximately 1. For these walking theories we see an enhancement of the rho-mass and a suppression of the sigma-mass. Both phenomena are characteristic for walking behaviour in the physical meson masses.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call