Abstract
We solve the homogeneous Bethe-Salpeter (HBS) equation for the scalar, pseudoscalar, vector, and axial-vector bound states of quark and anti-quark in large Nf QCD with the improved ladder approximation in the Landau gauge. The quark mass function in the HBS equation is obtained from the Schwinger-Dyson (SD) equation in the same approximation for consistency with the chiral symmetry. Amazingly, due to the fact that the two-loop running coupling of large Nf QCD is explicitly written in terms of an analytic function, large Nf QCD turns out to be the first example in which the SD equation can be solved in the complex plane and hence the HBS equation directly in the time-like region. We find that approaching the chiral phase transition point from the broken phase, the scalar, vector, and axial-vector meson masses vanish to zero with the same scaling behavior, all degenerate with the massless pseudoscalar meson. This may suggest a new type of manifestation of the chiral symmetry restoration in large Nf QCD.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.