Abstract

It is fascinating to predict the mass and width of the ordinary and exotic mesons solely based on their quark content and quantum numbers. Such prediction goes beyond conventional methodologies traditionally employed in hadron physics for calculating or estimating these quantities. The relation between the quantum numbers and the properties of the mesons, such as the mass and width, is complicated in the world of particle physics. However, the deep neural network (DNN) as a subfield of machine learning techniques provides a solution to this problem. By analyzing large datasets, deep learning algorithms can automatically identify complex patterns among the particles’ quantum numbers, and their mass and width, that would otherwise require complex calculations. In this study, we present two approaches using the DNNs to estimate the mass of some ordinary and exotic mesons. Also for the first time, the DNNs are trained to predict the width of ordinary and exotic mesons, whose widths have not been experimentally known. Our predictions obtained through the DNNs, will be useful for future experimental searches. Published by the American Physical Society 2024

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.