Abstract
Polyanionic DNA binds to cationic lipids to form electrostatic complexes exhibiting rich self-assembled structures. These types of complexes have been considered as a nonviral carrier in gene therapy and as a template for nanostructure construction. For the latter application where biocompatibility is not the key issue, replacement of cationic lipid by cationic surfactant is advantageous due to the wide availability of surfactant. Here we report the self-assembly behavior of the complexes of DNA with a cationic surfactant, dodecyltrimethylammonium bromide (DTAB), mixed with a neutral lipid, dioleoylphosphatidylethanolamine (DOPE), in fully hydrated state as a function of DTAB-to-DNA base pair molar ratio (x), DOPE-to-DTAB molar ratio (m) and temperature. The binary complexes of DNA with DTAB microphase separated to form hydrophilic and hydrophobic domains without long-range order. Incorporating DOPE into the complexes effectively strengthened the hydrophobic interaction and hence promoted the formations of long-range ordered mesophases, including a condensed multilamellar phase (L(alpha)(c)) at small to intermediate m (m </= approximately 4) and an inverted hexagonal phase (H(II)(c)) at large m (m > approximately 6). The lyotropic mesophase transition with respect to the change of m was properly predicted by a formula for calculating the packing parameter of amphiphile mixture. In addition to the lyotropic transition, an unusual thermotropic order-order transition (OOT) between L(alpha)(c) and H(II)(c) phases was revealed for the isoelectric complex with m = 3. This OOT was thermally reversible and was postulated to be driven by the reduction of the effective headgroup area due to the release of trapped water molecules.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.