Abstract

The photoexcitation dynamics of molecular materials on the 10-100nm length scale depend on complex interactions between electronic and vibrational degrees of freedom, rendering exact calculations difficult or intractable. The adaptive Hierarchy of Pure States (adHOPS) is a formally exact method that leverages the locality imposed by interactions between thermal environments and electronic excitations to achieve size-invariant scaling calculations for single-excitation processes in systems described by a Frenkel-Holstein Hamiltonian. Here, we extend adHOPS to account for arbitrary couplings between thermal environments and vertical excitation energies, enabling formally exact, size-invariant calculations that involve multiple excitations or states with shared thermal environments. In addition, we introduce a low-temperature correction and an effective integration of the noise to reduce the computational expense of including ultrafast vibrational relaxation in Hierarchy of Pure States (HOPS) simulations. We present these advances in the latest version of the open-source MesoHOPS library and use MesoHOPS to characterize charge separation at a one-dimensional organic heterojunction when both the electron and hole are mobile.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call