Abstract
In Parhyale hawaiensis, the first three divisions are holoblastic and asymmetric, resulting in an embryo comprised of eight cells—four macromeres and four micromeres. Lineage studies performed at this stage demonstrate that the progeny of each cell contribute to specific portions of different germ layers. However, it is not known if this lineage pattern means a given blastomere is committed to its specific fate, indicative of mosaic development, or if regulation can occur between blastomere progeny so that the loss of a blastomere could be compensated for during development. Furthermore, if compensation occurs, what would be the source of such replacement? To investigate these possibilities, we performed ablation experiments at the eight-cell stage. We find that loss of blastomeres results in compensation. To determine the compensation pattern, we combined ablation and cell lineage tracing to reveal that progeny of mesoderm and ectoderm producing blastomeres display intra-germ layer compensation. Furthermore, by ablating lineages later in development, we identify a key interval between gastrulation and germband elongation after which compensation no longer occurs. Our results suggest that Parhyale possesses a mechanism to assess the status of mesoderm and ectoderm formation and alter development to replace the missing portions of these lineages.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.