Abstract

Highly ordered mesocrystalline semiconductors often indicate tremendous prospects in the clean energy production and environmental photocatalysis mainly because of their unique superstructure for efficient charge transport pathways and long-lived charges. Here, superstructure Ta3N5 mesocrystals with the high-energy surface {2 0 0} planes exposed were the first time to be successfully fabricated by topological transformation of Ta2O5 mesocrystals. The prepared Ta3N5 mesocrystals showed enhanced visible-light photocatalytic hydrogen production activity of 98.67 μmol g−1 for 180 min irradiation, which was approximately 5.28 times that of comm-Ta3N5 prepared with commercial Ta2O5 as the starting material, mainly due to the formation of long-distance electron conduction pathways and long-lived charges. The detailed electronic band structures of the prepared Ta3N5 mesocrystals were also investigated by electrochemical method. Finally, possible visible-light photocatalytic mechanisms of Ta3N5 mesocrystals for enhanced hydrogen production was also proposed in detail. Current work also indicates that tantalum-based mesocrystals show great potential to enhance the charge separation for efficient photocatalytic water splitting.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.