Abstract

The contamination of the aquatic environment by micropollutants (MPs) brings risks for the ecosystem and human health. Constructed wetlands (CWs) were an eco-friendly technology to remove MPs from wastewater treatment plant effluent. In this study, the removal of MPs was evaluated in seven vertical flow mesocosm CWs with different configurations, including different support matrices (sand and a combination of bark-biochar), light pre-treatments (UVC and sunlight) or bioaugmentation in support matrices (activated sludge). The CWs with bark-biochar as support matrix significantly enhanced the removal of irbesartan and carbamazepine (>40 %), compared to the CW filled with the conventional support matrix sand. UVC irradiation as pre-treatment was more efficient in removing MPs than sunlight irradiation. After UVC pre-treatment, less MPs accumulated in the plants in the subsequent CW unit compared to the CW unit without any pre-treatment. Moreover, in the UVC combined CW system, less sulfamethoxazole, furosemide, mecoprop and diclofenac were accumulated in the plants (<0.5 μg) than other MPs (>3 μg). The addition of 0.5 % activated sludge combined with the aeration of influent did not improve MP removal in the CW. Considering the application, a bark-biochar based CW combined with UVC pre-treatment will result in more MP removal than a conventional sand CW.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call